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Abstract

In this paper, we generalize a technique of anti-diffusive flux corrections, recently introduced by Després and Lag-

outière [Journal of Scientific Computing 16 (2001) 479–524] for first-order schemes, to high order finite difference

weighted essentially non-oscillatory (WENO) schemes. The objective is to obtain sharp resolution for contact discon-

tinuities, close to the quality of discrete traveling waves which do not smear progressively for longer time, while main-

taining high order accuracy in smooth regions and non-oscillatory property for discontinuities. Numerical examples for

one and two space dimensional scalar problems and systems demonstrate the good quality of this flux correction. High

order accuracy is maintained and contact discontinuities are sharpened significantly compared with the original WENO

schemes on the same meshes.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper, we are interested in improving the high order finite difference weighted essentially

non-oscillatory (WENO) schemes in the resolution of contact discontinuities. We use the fifth-order finite

difference WENO scheme in [11] as an example to demonstrate our approach, although the technique can

also be used on finite difference WENO schemes of other orders of accuracy [1] and finite volume WENO

schemes on rectangular and triangular meshes [10,13,16].
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High order finite difference WENO schemes in [11] were developed based on the successful ENO schemes

[9,20,21] and third-order finite volume WENO schemes [13], and have been quite successful in computa-

tional fluid dynamics and other applications. They are especially suitable for problems containing both

shocks and complicated smooth flow features. For more details, we refer to the lecture notes [18] and

the survey paper [19], and the references therein.
However, as a disadvantage of all shock capturing schemes, the high order finite difference WENO

schemes in [11] also suffer from a relatively poor resolution of contact discontinuities, comparing with

the resolution of shocks. Although in general a higher order method does have sharper contact discontinu-

ity resolution than lower order methods, and the resolution can often be improved by using a better Rie-

mann solver or flux splitting, it is still in general not easy to stop the progressively more severe smearing for

longer simulation time, and at the same time to maintain non-oscillatory property and high order accuracy

of the scheme. This is particularly challenging in two or more spatial dimensions.

There have been a lot of efforts in the literature to overcome this problem. Harten [7] proposed the arti-
ficial compression method, which modifies the numerical flux so that the numerical characteristics, instead

of being in parallel or diverging from the contact discontinuity, converge slightly towards the contact dis-

continuity to keep its sharpness. Of course, this compression must be done carefully so that stability and

accuracy are not lost, and smooth parts of the solution are not evolved to small staircases. This idea

was later generalized by Yang [28] to higher order finite volume ENO schemes, via a slope modification.

The approach of Yang [28] maintains higher order accuracy of the original ENO scheme while significantly

sharpens contact discontinuities. Yang�s approach was also applied to finite difference ENO schemes [21]

and WENO schemes [1,11] with equally good results. However, two-dimensional results using this ap-
proach are less satisfactory. Another successful strategy is Harten�s subcell resolution idea [8], which uses

two pieces of different polynomial reconstructions in the discontinuity cell, instead of the usual single poly-

nomial reconstruction in a cell, in order not to smear the discontinuity. This strategy works well for one-

dimensional problems [8,21]. However, it seems to be difficult to generalize this idea to multi-dimensional

problems, except for some special situations, e.g. [22].

More recently, Després and Lagoutière [3] proposed a new approach called limited downwind scheme,

much akin to a class of flux limiters by Sweby [24], to prevent the smearing of contact discontinuities while

keeping non-linear stability. Their scheme is identical with the ultrabee scheme developed by Roe [15] in the
case of linear advection. By introducing an anti-diffusive flux, it gives remarkably sharp profile of contact

discontinuities in both one-dimensional scalar and system cases. More importantly, they observe numeri-

cally and prove theoretically that their scheme adopts a class of moving traveling wave solutions exactly.

This has an important implication that the smearing of contact discontinuities will not be progressively

more severe for larger time, but will be stabilized for all time. A later paper by Bouchut [2] further modifies

this scheme to satisfy entropy conditions and also gives a simple explicit formula for this limited downwind

anti-diffusive flux.

Even though the schemes in [2,3] are quite attractive, they are only first-order accurate and are not suit-
able for computing solutions containing both discontinuities and complex smooth flow features. Our objec-

tive in this paper is to develop an anti-diffusive flux correction technique, based on the approach of [2,3], to

high order finite difference WENO schemes in [1,11]. We would like the resulting scheme to maintain high

order accuracy in smooth regions, non-oscillatory behavior near discontinuities, and sharp contact discon-

tinuity resolution similar to the first-order schemes in [2,3] which does not progressively become worse for

larger time.

The first-order schemes developed in [2,3] use simple Euler forward time discretization. For our high or-

der finite difference schemes, we will need to use high order total variation diminishing (TVD) Runge–Kutta
time discretizations [20]. It is more difficult to maintain sharp contact discontinuity resolution with multi-

stage high order Runge–Kutta methods. We will need to introduce adjustments in each stage of the Runge–

Kutta methods in order to overcome this difficulty.
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We would like to remark that recently, Toro and Titarev initialized an approach to use second-order

two-point TVD fluxes, which are less dissipative than first-order monotone fluxes, as building blocks for

higher order Godunov type schemes [26,25]. Their numerical results show an improvement, sometimes dra-

matic, on numerical resolutions when such fluxes are used. Our current work has the same philosophy of

using less dissipative low order fluxes as building blocks for higher order extensions. We use, however, first-
order anti-diffusive fluxes of more than two points, hence the traditional Godunov procedure does not

apply and a careful extension to higher order schemes must be made to maintain accuracy, stability and

sharpening of contact discontinuities simultaneously.

This paper is organized as follows. In Section 2, we briefly review the first-order limited downwind flux

of [3], using the form in [2]. In Section 3, we present the modified fifth-order WENO scheme with third-

order Runge–Kutta time discretization for one-dimensional problems. In Section 4, we present our schemes

in two dimensions. In Section 5, we show extensive numerical results to demonstrate the behavior of our

approach. Concluding remarks are given in Section 6.
2. First-order limited downwind anti-diffusive scheme for one-dimensional conservation laws

In this section, we briefly review the first-order limited downwind flux of [3], using the form in [2]. We

consider a one-dimensional scalar conservation law
ut þ f ðuÞx ¼ 0 ð2:1Þ

with t > 0, x 2 R and f 0(u) P 0. The procedure for the case with f 0(u) 6 0 is completely symmetric.

An explicit conservative fully discrete finite difference/finite volume scheme (there is no need to distin-

guish between them for first- and second-order schemes) has the form
unþ1
i � uni þ ki f̂

n

iþ1
2
� f̂

n

i�1
2

� �
¼ 0; ð2:2Þ
where uni is the approximation either to the point value u(xi, t
n) (finite difference) or to the cell average

1
Dxi

R x
iþ1

2
x
i�1

2

uðx; tnÞdx (finite volume), ki = Dt/Dxi is the local CFL number, and f̂
n

iþ1
2
is the numerical flux. We

will often drop the superscript n which refers to the time step and denote by ui; f̂ iþ1
2
instead of uni ; f̂

n

iþ1
2
,

respectively, when there is no ambiguity. A basic result about the numerical flux stated in [2] is

Proposition 2.1. Assume that the usual CFL condition kif 0(u) 6 1 holds, and the numerical flux satisfies
f̂ iþ1
2
2 f̂

diss

iþ1
2
; f̂

l

iþ1
2

h i\
f̂
diss

iþ1
2
; f̂

r

iþ1
2

h i
; ð2:3Þ
where
f̂
diss

iþ1
2
¼ f ðuiÞ; f̂

l

iþ1
2
¼ ui � ui�1

ki
þ f ðui�1Þ; f̂

r

iþ1
2
¼ f ðuiþ1Þ; ð2:4Þ
then the scheme (2.2) satisfies the maximum principle
min
k

unk 6 unþ1
i 6 max

k
unk ;
and is total variation diminishing (TVD)
TVðunþ1Þ 6 TVðunÞ; where TVðuÞ �
X
i

juiþ1 � uij:
Here and below, we use the notation [a,b] to denote the closed interval [min(a,b),max(a,b)]. The dissipative
flux f̂

diss
is the classical upwind flux, and fluxes f̂

l
and f̂

r
are the extremal leftwind and rightwind fluxes, in the

sense that ui � kiðf̂
l

iþ1
2
� f̂

diss

i�1
2
Þ ¼ ui�1; ui � kiðf̂

diss

iþ1
2
� f̂

r

i�1
2
Þ ¼ ui.

Next we give the definition of the limited downwind flux in [3].
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Definition 2.2. The limited downwind flux f̂
a

iþ1
2
is defined by
f̂
diss

iþ1
2
; f̂

l

iþ1
2

h i\
f̂
diss

iþ1
2
; f̂

r

iþ1
2

h i
¼ f̂

diss

iþ1
2
; f̂

a

iþ1
2

h i
: ð2:5Þ
It can be easily verified that an equivalent form of this limited downwind flux is
f̂
a

iþ1
2
¼ f̂

diss

iþ1
2
þminmod f̂

l

iþ1
2
� f̂

diss

iþ1
2
; f̂

r

iþ1
2
� f̂

diss

iþ1
2

� �
; ð2:6Þ
by an explicit calculation of different cases. It can also be rewritten as, using (2.4)
f̂
a

iþ1
2
¼ f ðuiÞ þminmod

ui � ui�1

ki
þ f ðui�1Þ � f ðuiÞ; f ðuiþ1Þ � f ðuiÞ

� �
: ð2:7Þ
Here, as usual, the minmod function is defined by
minmodða; bÞ ¼
0 ab 6 0;

a ab > 0; jaj 6 jbj;
b ab > 0; jaj > jbj:

8><
>:
The equivalent form (2.7) is the one we are going to use for the construction of our high order extension,

since it allows for this extension to maintain both high order accuracy and stability.

The scheme with the limited downwind flux f̂
a
satisfies the following attractive property, proved in [3].

Proposition 2.3. The scheme (2.2) with the limited downwind flux f̂
a
defined in (2.7), applied to a linear

advection equation
ut þ aux ¼ 0; ð2:8Þ
where a > 0 is a constant, maintains a class of traveling wave solutions: for any initial condition which is piece-

wise constant with each piece containing at least three grid points, under the CFL condition ak ¼ a Dt
Dx 6 1, the

numerical solution will not have more than one transition point between two constant pieces.

This property guarantees that, for such initial conditions (or for other initial conditions which can evolve

into such shapes), the numerical solution will maintain its shape for all time and will not progressively

smear discontinuities more severely for longer time.

We will also consider a relaxed anti-diffusive flux in the following form:
f̂
a

iþ1
2
¼ f ðuiÞ þ uiminmod

ui � ui�1

ki
þ f ðui�1Þ � f ðuiÞ; f ðuiþ1Þ � f ðuiÞ

� �
; ð2:9Þ
where ui is a discontinuity indicator between 0 and 1. Ideally, to apply the anti-diffusive modification to

the upwind flux only near a discontinuity, ui should be close to 0 in smooth regions and close to 1 near a

discontinuity. Our choice of ui will be described in Section 3.3. When 06ui6 1, by Proposition 2.1, we
can see that the scheme (2.2) with the flux (2.9) still satisfies the maximum principle and is a TVD

scheme.

Another observation in designing high order extensions of this scheme is related to the time discretiza-

tion. First-order explicit Euler method can no longer be used, but higher order multi-stage Runge–Kutta

methods have additional difficulties in coupling with the sharpening procedure. This issue will be addressed

in next section.
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3. Modified high order WENO finite difference scheme in one dimension

In this section, we extend the first-order sharpening procedure to higher order WENO finite difference

schemes in one dimension. We will first discuss the modification of the first-order anti-diffusive flux when

coupled with high order multi-stage Runge–Kutta time discretization.
3.1. Second- and third-order TVD Runge–Kutta time discretization

The second-order TVD Runge–Kutta time discretization [20] is given by
uð1Þ ¼ un þ DtLðunÞ;

unþ1 ¼ 1

2
un þ 1

2
uð1Þ þ 1

2
DtLðuð1ÞÞ;

ð3:1Þ
where L is the spatial discretization of �f(u)x. This can be rewritten as
uð1Þ ¼ un þ DtLðunÞ;

unþ1 ¼ un þ 1

2
DtLðunÞ þ 1

2
DtLðuð1ÞÞa:

ð3:2Þ
In order to maintain the moving traveling wave solutions for piecewise constant functions containing con-

tact discontinuities as in the Euler forward case, we would need to modify the scheme (3.2) by
uð1Þ ¼ un þ DtLðunÞ;

unþ1 ¼ un þ 1

2
DtL0ðunÞ þ 1

2
DtLðuð1ÞÞ;

ð3:3Þ
where the operator L is defined as
LðuÞi ¼ �ki f̂
a

iþ1
2
� f̂

a

i�1
2

� �
; ð3:4Þ
with the anti-diffusive flux f̂
a
given by (2.7), and the operator L 0 is defined as
L0ðuÞi ¼ �ki �f
a

iþ1
2
� �f

a

i�1
2

� �
; ð3:5Þ
with the modified anti-diffusive flux �f
a
given by
�f
a

iþ1
2
¼

f ðuiÞ þminmod 2ðui�ui�1Þ
ki

þ f ðui�1Þ � f ðuiÞ; f ðuiþ1Þ � f ðuiÞ
� �

; bc > 0; jbj < jcj;

f̂
a
; otherwise;

8<
: ð3:6Þ
where b = (ui � ui� 1)/ki + f(ui� 1) � f(u), c = f(ui+1) � f(ui).

The scheme (3.3) with L and L 0 defined by (3.4) and (3.5) is clearly first-order accurate in space and sec-

ond-order accurate in time. The purpose of the extra factor 2 in the first argument of the minmod function

in the definition of �f
a
is to compensate for the coefficient 1

2
in front of L 0, so that the final scheme can still

maintain exactly traveling wave solutions of a piecewise constant function. To be more precise, numerical

experiments show that, for a piecewise constant function with each piece containing at least four grid

points, the numerical solution does not have more than two transition points between two constant pieces

for the CFL condition ak ¼ a Dt
Dx 6

1
2
. A larger CFL number (up to 0.58 by our numerical experiments) can

be used to obtain sharp contact discontinuity resolution, although occasionally with more than two tran-

sition points between two constant pieces. For example, when ak = 0.4 and the initial condition is a step

function
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u0j ¼
1; j 6 0;

0; otherwise:

�
ð3:7Þ
The sequence of the numerical solution for the first few time steps are: after one-time step
u1j ¼
1; j 6 0;

0:4; j ¼ 1;

0; otherwise;

8><
>:
after two-time steps
u2j ¼

1; j 6 0;

0:7; j ¼ 1;

0:1; j ¼ 2;

0; otherwise;

8>>><
>>>:
after three-time steps
u3 ¼

1; j 6 0;

0:88; j ¼ 1;

0:32; j ¼ 2;

0; otherwise;

8>>><
>>>:
after four-time steps
u4 ¼
1; j 6 1;

0:6; j ¼ 2;

0; otherwise;

8><
>:
after five-time steps
u5j ¼

1; j 6 1;

0:8; j ¼ 2;

0:2; j ¼ 3;

0; otherwise;

8>>><
>>>:
after six-time steps
u6j ¼

1; j 6 1;

0:96; j ¼ 2;

0:44; j ¼ 3;

0; otherwise;

8>>><
>>>:
after seven-time steps
u7j ¼

1; j 6 2;

0:7; j ¼ 3;

0:1; j ¼ 4;

0; otherwise:

8>>><
>>>:
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Clearly u7j ¼ u2j�2, hence the numerical solution repeats itself after five-time steps with a shift. If ak is not a

rational number, the numerical solution will not exactly repeat after finitely many time steps, but the num-

ber of transition points will not be larger than two.

The third-order TVD Runge–Kutta method in [20] has the following form:
uð1Þ ¼ un þ DtLðunÞ;

uð2Þ ¼ 3

4
un þ 1

4
uð1Þ þ 1

4
DtLðuð1ÞÞ;

unþ1 ¼ 1

3
un þ 2

3
uð2Þ þ 2

3
DtLðuð2ÞÞ;

ð3:8Þ
which can be rewritten as
uð1Þ ¼ un þ DtLðunÞ;

uð2Þ ¼ un þ 1

4
DtLðunÞ þ 1

4
DtLðuð1ÞÞ;

unþ1 ¼ un þ 1

6
DtLðunÞ þ 1

6
DtLðuð1ÞÞ þ 2

3
DtLðuð2ÞÞ:

ð3:9Þ
Again, in order to maintain the moving traveling wave solutions for piecewise constant functions contain-

ing contact discontinuities as in the Euler forward case, we would need to modify the scheme (3.9) by
uð1Þ ¼ un þ DtLðunÞ;

uð2Þ ¼ un þ 1

4
DtL0ðunÞ þ 1

4
DtLðuð1ÞÞ;

unþ1 ¼ un þ 1

6
DtL00ðunÞ þ 1

6
DtLðuð1ÞÞ þ 2

3
DtLðuð2ÞÞ;

ð3:10Þ
where the operator L is defined by (3.4) with the anti-diffusive flux f̂
a
given by (2.7), the operator L 0 is de-

fined by (3.5) with the modified anti-diffusive flux �f
a
given by
�f
a

iþ1
2
¼

f ðuiÞ þminmod 4ðui�ui�1Þ
ki

þ f ðui�1Þ � f ðuiÞ; f ðuiþ1Þ � f ðuiÞ
� �

; bc > 0; jbj < jcj;

f̂
a
; otherwise;

8<
:

and the operator L00 is defined by
L00ðuÞi ¼ �ki ~f
a

iþ1
2
� ~f

a

i�1
2

� �
ð3:11Þ
with the modified anti-diffusive flux ~f
a
given by
~f
a

iþ1
2
¼

f ðuiÞ þminmod 6ðui�ui�1Þ
ki

þ f ðui�1Þ � f ðuiÞ; f ðuiþ1Þ � f ðuiÞ
� �

; bc > 0; jbj < jcj

f̂
a
; otherwise:

8<
:

Here again b = (ui � ui� 1)/ki + f(ui� 1) � f(u), c = f(ui+1) � f(ui).

The scheme (3.10) with L, L 0 and L00 defined by (3.4), (3.5) and (3.11) is clearly first-order accurate in

space and third-order accurate in time. The purpose of the extra factor 4 in the first argument of the min-

mod function in the definition of �f
a
and the extra factor 6 in the first argument of the minmod function in

the definition of ~f
a
is again to compensate for the coefficients 1/4 and 1/6 in front of L 0 and L00, respectively,

so that the final scheme can still maintain exactly traveling wave solutions of a piecewise constant function.

To be more precise, numerical experiments show that, for a piecewise constant function with each piece
containing at least four grid points, the numerical solution does not have more than two transition points
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between two constant pieces for the CFL number ak ¼ a Dt
Dx up to about 0.45. For example, when ak = 0.3

and the initial condition the step function (3.7), we can verify that u12j ¼ u2j�3, namely the numerical solution

repeats itself after 10-time steps with a shift. Again, if ak is not a rational number, the numerical solution

will not exactly repeat after finitely many time steps, but the number of transition points will not be larger

than two.

3.2. Anti-diffusive flux with high order WENO finite difference reconstruction

We now discuss the modification of the high order WENO finite difference fluxes to obtain the anti-dif-

fusive effect. We refer to [11] for the details of the construction of the finite difference WENO flux and will

not repeat them here. The high order WENO finite difference fluxes will be denoted by f̂
�
iþ1

2
and f̂

þ
iþ1

2
, for the

two upwind biased fluxes based on stencils with one more point to the left and to the right, respectively. For

WENO-Roe schemes [11], the numerical flux is chosen as f̂
�
iþ1

2
when f 0(u) > 0 and as f̂

þ
iþ1

2
when f 0(u) 6 0.

The modification of the WENO fluxes for the anti-diffusive effects starts with the choice of an anti-dif-

fusive flux similar to (2.7)
f̂
a

iþ1
2
¼ f̂

�
iþ1

2
þminmod

ui � ui�1

ki
þ f̂

�
i�1

2
� f̂

�
iþ1

2
; f̂

þ
iþ1

2
� f̂

�
iþ1

2

� �
: ð3:12Þ
Or, when the discontinuity indicator ui is taken into consideration, the anti-diffusive flux takes the form
f̂
a

iþ1
2
¼ f̂

�
iþ1

2
þ uiminmod

ui � ui�1

ki
þ f̂

�
i�1

2
� f̂

�
iþ1

2
; f̂

þ
iþ1

2
� f̂

�
iþ1

2

� �
: ð3:13Þ
Notice that the only change we have made is to replace the first-order fluxes in (2.7) and (2.9) by the higher

order WENO fluxes.

We remark that the correction to the original WENO flux is no larger in magnitude than that of

f̂
þ
iþ1

2
� f̂

�
iþ1

2
, which is on the level of truncation errors for the WENO schemes because both f̂

þ
iþ1

2
and f̂

�
iþ1

2

are high order approximations to the same physical flux at the same location. This guarantees that the mod-
ification does not destroy the original high order accuracy of the WENO schemes.

When the WENO scheme is discretized by a Runge–Kutta time discretization, for example if the third-

order TVD Runge–Kutta method (3.8) is used, we will again use the modified version (3.10), with the

numerical fluxes corresponding to L, L 0 and L00 defined by (3.13), by
�f
a

iþ1
2
¼

f̂
�
iþ1

2
þminmod 4ðui�ui�1Þ

ki
þ f̂

�
i�1

2
� f̂

�
iþ1

2
; f̂

þ
iþ1

2
� f̂

�
iþ1

2

� �
; bc > 0; jbj < jcj;

f̂
a
; otherwise;

8<
:

and by
~f
a

iþ1
2
¼

f̂
�
iþ1

2
þminmod 6ðui�ui�1Þ

ki
þ f̂

�
i�1

2
� f̂

�
iþ1

2
; f̂

þ
iþ1

2
� f̂

�
iþ1

2

� �
; bc > 0; jbj < jcj;

f̂
a
; otherwise;

8<
:

respectively. Here b ¼ ui�ui�1

ki
þ f̂

�
i�1

2
� f̂

�
iþ1

2
and c ¼ f̂

þ
iþ1

2
� f̂

�
iþ1

2
.

3.3. The discontinuity indicator

As mentioned before, we would like to design the discontinuity indicator ui such that it is close to 0 in

smooth regions and close to 1 near a discontinuity. After extensive numerical experiments, we have settled

on the following choice of the discontinuity indicator ui for our numerical tests
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ui ¼
bi

bi þ ci
; ð3:14Þ
where
ai ¼ jui�1 � uij2 þ e; bi ¼
ai
ai�1

þ aiþ1

aiþ2

� �2

; ci ¼
jumax � uminj2

ai
; ð3:15Þ
where e is a small positive number taken as 10�6 in our numerical experiments, and umax and umin are the

maximum and minimum values of uj for all grid points. Clearly, 0 6 ui 6 1, and ui = O(Dx2) in smooth

regions. Near a strong discontinuity, ci � bi, ui is close to 1.
3.4. System of equations

For system of equations, a local characteristic decomposition is performed to compute the numerical

flux. We refer to [18] for the details of this local characteristic decomposition and will not repeat it here.
In each characteristic direction, the evaluation of the numerical flux, including the anti-diffusive sharpening

procedure, is similar to the scaler case with the wind direction determined by the sign of the corresponding

eigenvalue. We should emphasize that the anti-diffusive sharpening procedure may violate the entropy con-

dition and generate entropy violating shocks when used to a non-linear characteristic field, hence in our

numerical experiments we use it only in the linearly degenerate fields, for example, in the second field with

eigenvalue u for the one-dimensional Euler equations.
4. Modified high order WENO finite difference scheme in two dimensions

Extension of the anti-diffusive fluxes to two dimensions is not straightforward. Many ideas of sharpening

contacts, such as the artificial compression idea in [7,28] and the sub-cell resolution idea in [8], do not work

as well in two dimensions. In [4], Després and Lagoutière extended their one-dimensional technique in [3] to

two dimensions by dimension splitting. The adoption of dimension splitting will restrict the order of accu-

racy to no higher than second order. We would like to find a two-dimensional extension of the methodology

which does not rely on dimensional splitting.
We will first look at the first-order case.
4.1. First-order anti-diffusive flux in two dimension

We consider a two-dimensional scalar conservation law
ut þ f ðuÞx þ gðuÞy ¼ 0; ð4:1Þ
with t > 0, x, y 2 R and f 0(u) P 0, g 0(u) P 0. Other sign combinations of f 0(u) and g 0(u) can be handled

analogously.

An explicit conservative fully discrete finite difference/finite volume scheme (again, there is no need to

distinguish between them for first- and second-order schemes) has the form
unþ1
i;j � uni;j þ kxi;j f̂

n

iþ1
2
;j � f̂

n

i�1
2
;j

� �
þ kyi;j ĝni;jþ1

2
� ĝni;j�1

2

� �
¼ 0; ð4:2Þ
where uni;j is the approximation either to the point value u(xi,yj, t
n) (finite difference) or to the cell average

1
DxiDyj

R y
jþ1

2
y
j�1

2

R x
iþ1

2
x
i�1

2

uðx; y; tnÞdxdy (finite volume), kxi;j ¼ Dt=Dxi and kyi;j ¼ Dt=Dyj are the local CFL numbers,



Z. Xu, C.-W. Shu / Journal of Computational Physics 205 (2005) 458–485 467
and f̂
n

iþ1
2
;j and ĝni;jþ1

2
are the numerical fluxes. We will again drop the superscript n which refers to the time

step when there is no ambiguity. Similar to Proposition 2.1, we have the following result.

Proposition 4.1. Assume that the CFL conditions kxi;jf
0ðuÞ 6 1=d and kyi;jg

0ðuÞ 6 1=d hold, where d = 2 is the

dimension, and the numerical fluxes satisfy
f̂ iþ1
2
;j 2 f̂

diss

iþ1
2
;j; f̂

l

iþ1
2
;j

h i\
f̂
diss

iþ1
2
;j; f̂

r

iþ1
2
;j

h i
; ð4:3Þ
where
f̂
diss

iþ1
2
;j ¼ f ðui;jÞ; f̂

l

iþ1
2
;j ¼

ui;j � ui�1;j

dkxi;j
þ f ðui�1;jÞ; f̂

r

iþ1
2
;j ¼ f ðuiþ1;jÞ; ð4:4Þ
and a symmetric condition in the y direction, then the scheme (4.2) satisfies the maximum principle
min
k;l

unk;l 6 unþ1
i;j 6 max

k;l
unk;l: ð4:5Þ
Proof. Condition (4.3) allows another expression
f̂ iþ1
2
;j ¼ 1� aliþ1

2
;j

� �
f̂
diss

iþ1
2
;j þ aliþ1

2
;jf̂

l

iþ1
2
;j; f̂ iþ1

2
;j ¼ 1� ariþ1

2
;j

� �
f̂
diss

iþ1
2
;j þ ariþ1

2
;jf̂

r

iþ1
2
;j
with 0 6 al
iþ1

2
;j
; ar

iþ1
2
;j
6 1. Similarly
ĝi;jþ1
2
¼ 1� bl

i;jþ1
2

� �
ĝdissi;jþ1

2
þ bl

i;jþ1
2
ĝli;jþ1

2
; ĝi;jþ1

2
¼ 1� br

i;jþ1
2

� �
ĝdissi;jþ1

2
þ br

i;jþ1
2
ĝri;jþ1

2

with 0 6 bl
i;jþ1

2
; br

i;jþ1
2
6 1.

We can also write
f ðui;jÞ � f ðui�1;jÞ ¼ li�1
2
;jðui;j � ui�1;jÞ; gðui;jÞ � gðui;j�1Þ ¼ mi;j�1

2
ðui;j � ui;j�1Þ
with kxi;jli�1
2
;j 6

1
d and kyi;jmi;j�1

2
6

1
d by the CFL conditions. Therefore, a simple manipulation gives
f̂ iþ1
2
;j � f̂ i�1

2
;j ¼ f̂

diss

iþ1
2
;j þ aliþ1

2
;j f̂

l

iþ1
2
;j � f̂

diss

iþ1
2
;j

� �h i
� f̂

diss

i�1
2
;j þ ari�1

2
;j f̂

r

i�1
2
;j � f̂

diss

i�1
2
;j

� �h i
¼ 1

d
� kxi;jli�1

2
;j

� �
aliþ1

2
;j þ kxi;jli�1

2
;j 1� ariþ1

2
;j

� �� �
ui;j � ui�1;j

kxi;j
¼ Ci;j

ui;j � ui�1;j

kxi;j
with 0 6 Ci;j 6
1
d. Symmetrically we have, in the y direction
ĝi;jþ1
2
� ĝi;j�1

2
¼ ĝdissi;jþ1

2
þ bl

i;jþ1
2
ĝli;jþ1

2
� ĝdissi;jþ1

2

� �h i
� ĝdissi;j�1

2
þ br

i;j�1
2
ĝri;j�1

2
� ĝdissi;j�1

2

� �h i
¼ 1

d
� kyi;jmi;j�1

2

� �
bl
i;jþ1

2
þ kyi;jmi;j�1

2
1� br

i;jþ1
2

� �� �
ui;j � ui;j�1

kyi;j
¼ Di;j

ui;j � ui;j�1

kyi;j
with 0 6 Di;j 6
1
d. Now the scheme (4.2) becomes
unþ1
i;j ¼ uni;j � Ci;jðuni;j � uni�1;jÞ � Di;jðuni;j � uni;j�1Þ ¼ ð1� Ci;j � Di;jÞuni;j þ Ci;juni�1;j þ Di;juni;j�1: ð4:6Þ
Since Ci,j P 0, Di,j P 0 and Ci;j þ Di;j 6
1
d þ 1

d ¼ 1, the right-hand side of (4.6) is a convex combination of

uni;j; u
n
i�1;j and uni;j�1. Therefore, the maximum principle (4.5) holds. h

We now define the limited downwind flux in the two-dimensional case.

Definition 4.2. The limited downwind flux f̂
a

iþ1
2;j

in the two-dimensional case is defined by
f̂
diss

iþ1
2
;j; f̂

l

iþ1
2
;j

h i\
f̂
diss

iþ1
2
;j; f̂

r

iþ1
2
;j

h i
¼ f̂

diss

iþ1
2
;j; f̂

a

iþ1
2
;j

h i
; ð4:7Þ
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where f̂
diss

iþ1
2
;j; f̂

l

iþ1
2
;j and f̂

r

iþ1
2
;j are defined in (4.4). An equivalent form of this limited downwind flux is
-0

-0

0

0

Fig. 1.

1); sol
f̂
a

iþ1
2
;j ¼ f ðui;jÞ þminmod

ui;j � ui�1;j

dkxi;j
þ f ðui�1;jÞ � f ðui;jÞ; f ðuiþ1;jÞ � f ðui;jÞ

 !
: ð4:8Þ
The definition of ĝai;jþ1
2
is symmetric.

From Proposition 4.1, we know that scheme (4.2) with the flux (4.8) satisfies the maximum principle.

However, we cannot prove that it is TVD. We will perform a numerical test to see the behavior of this

scheme. The numerical test will be performed on the two-dimensional linear advection equation
ut þ ux þ uy ¼ 0; ð4:9Þ

defined on �1 6 x < 1, �1 6 y < 1, with the following initial conditions:
uðx; y; 0Þ ¼
1; jxj 6 0:5; jyj 6 0:5;

0; otherwise;

�
or uðx; y; 0Þ ¼ 1; x2 þ y2 6 0:5;

0; otherwise;

�
ð4:10Þ
and periodic boundary conditions. We run the scheme up to t = 20, namely 10 periods later. The results are
plotted in Fig. 1. Clearly, the results are not satisfactory and do not seem to be TVD. The problem might be

related to the linear instability with the explicit Euler forward time discretization, as too much of the down-

wind information is used in the flux (4.8). A related phenomenon is the well-known result of Goodman and

LeVeque [6] that no second or higher order TVD schemes exist in two dimensions.

If we use instead a second or higher order TVD Runge–Kutta time discretization with the same anti-

diffusive flux (4.8), the results look very different and much better, see Fig. 2. Similar to the one-dimensional

case, the scheme is able to maintain sharp contact discontinuities for very long time without progressively

more severe smearing. As we know, central difference with first-order Euler forward time discretization is
linearly unconditionally unstable for the linear advection equation (4.9), while central difference with third

or higher order Runge–Kutta time discretization is linearly stable under suitable CFL conditions. The
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comparison of the results in Figs. 1 and 2 strongly suggests that linear instability is the cause of the bad

behavior of the scheme (4.2) with the flux (4.8) when first-order Euler forward time discretization is used.

One must use at least a second-order Runge–Kutta time discretization.

We now generalize the first-order anti-diffusive scheme to higher order WENO finite difference schemes.

4.2. Anti-diffusive fluxes with high order WENO finite difference reconstruction in two dimension

Two-dimensional finite difference WENO schemes [11] are similar to that for one dimension, with
numerical fluxes computed in each direction. Thus, when the usual WENO fluxes f̂

�
iþ1

2
;j are computed,

we obtain the anti-diffusive fluxes by
f̂
a

iþ1
2
;j ¼ f̂

�
iþ1

2
;j þ ui;jminmod

ui;j � ui�1;j

dkxi;j
þ f̂

�
i�1

2
;j � f̂

�
iþ1

2
;j; f̂

þ
iþ1

2
;j � f̂

�
iþ1

2
;j

 !
:

For fixed j, ui,j has the same definition as (3.14) in one dimension. Symmetrically for the y direction, we

have
ĝai;jþ1
2
¼ ĝ�i;jþ1

2
þ wi;jminmod

ui;j � ui;j�1

dkyi;j
þ ĝ�i;j�1

2
� ĝ�i;jþ1

2
; ĝþi;jþ1

2
� ĝ�i;jþ1

2

 !
with the discontinuity indicator wi,j defined similarly to (3.14) in the y direction with fixed xi.

We use the third-order TVD Runge–Kutta method (3.10) for the time discretization.

Two-dimensional systems are treated dimension by dimension, with each dimension dealt with the

procedure described in Section 3.4.
5. Numerical results

In this section, we provide numerical results to demonstrate the behavior of the anti-diffusive high order

WENO finite difference schemes. We use the fifth-order WENO scheme in [11], based on the Lax–Friedrichs
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flux splitting and the local characteristic decomposition for the system case, as our base scheme. The CFL

number is taken as 0.3, except for the accuracy tests where the CFL numbers are taken smaller for more re-

fined meshes to guarantee that spatial errors dominate.

5.1. One-dimensional scalar linear equations

In this section, we test our schemes on one-dimensional scalar linear problems. The computational

domain is �1 < x 6 1 and periodic boundary conditions are used for all problems in this section.

Example 5.1. We test the accuracy of the anti-diffusive fifth-order WENO finite difference scheme for the
linear advection equation
Table

Errors

the on

N

40

80

160

320

640
ut þ ux ¼ 0 ð5:1Þ

with the initial condition
uðx; 0Þ ¼ sinðpxÞ;

up to t = 2. The results and a comparison with the original fifth-order WENO scheme [11] are given in

Table 1. We can clearly see that fifth-order accuracy is achieved and the errors of the fifth-order anti-

diffusive WENO scheme are comparable with that of the original fifth-order WENO scheme.

Example 5.2. We solve the linear advection equation (5.1) with the initial condition
uðx; 0Þ ¼
1; �0:5 < x 6 0:5;

0; otherwise:

�
ð5:2Þ
The results at t = 10 (after five-time periods) and at t = 100 (after 50-time periods) are shown in Fig. 3. We
can see clearly that the regular fifth-order WENO scheme progressively smears the contact discontinuities

more severely with larger time, while the anti-diffusive fifth-order WENO scheme has a sharp resolution for

the contacts which does not deteriorate noticeably with larger time.

Example 5.3. We solve the linear advection equation (5.1) with the following initial condition:
uðx; 0Þ ¼
�x sin 3p

2
x2

� 	
; �1 < x 6 � 1

3
;

j sinð2pxÞj; � 1
3
< x 6 1

3
;

2x� 1� 1
6
sinð3pxÞ; 1

3
6 x 6 1:

8><
>:
The solution of this problem contains both contact discontinuities and corner singularities (discontinuities

in the first derivative), and smooth structures. The results at t = 11 (after 5.5-time periods) and at t = 101
(after 50.5-time periods) are shown in Fig. 4. We can again see that the regular fifth-order WENO scheme
1

and numerical orders of accuracy of the fifth-order anti-diffusive WENO scheme and the original fifth-order WENO scheme for

e-dimensional linear advection equation (5.1)

Anti-diffusive WENO Original WENO

L1 error Order L1 error Order L1 error Order L1 error Order

3.75E � 5 8.70E � 5 4.47E � 5 8.82E � 5

1.32E � 6 4.82 2.88E � 6 4.91 1.39E � 6 5.00 2.83E � 6 4.96

4.30E � 8 5.00 8.63E � 8 5.04 4.36E � 8 5.00 8.51E � 8 5.05

1.35E � 9 5.00 2.55E � 9 5.07 1.36E � 9 5.00 2.55E � 9 5.06

4.21E � 11 5.01 7.31E � 11 5.12 4.22E � 11 5.01 7.32E � 11 5.12
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Fig. 3. Example 5.2. One-dimensional linear advection. 100 uniform mesh points. Solid lines: the exact solution; solid rectangle

symbols: numerical solution of the regular fifth-order WENO scheme; unfilled diamond symbols: numerical solution of the anti-

diffusive fifth-order WENO scheme. Left: t = 10; right: t = 100.
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progressively smears the contact discontinuities more severely with larger time, while the anti-diffusive fifth-

order WENO scheme has a sharp resolution for the contacts which does not deteriorate noticeably with

larger time.

Example 5.4. We solve the variable coefficient linear equation
ut þ ðð2þ sinðpðxþ 1ÞÞÞuÞx ¼ 0
with the initial condition (5.2). The results at t = 10 and at t = 100 are shown in Fig. 5. We can again ob-

serve a significant improvement of the anti-diffusive fifth-order WENO scheme over the regular fifth-order

WENO scheme in the resolution of the contact discontinuities, especially for larger time.
5.2. One-dimensional systems

In this section, we test our schemes on the one-dimensional Euler equations of compressible gas
dynamics
ut þ fðuÞx ¼ 0;
here u = (q,qu,E), f(u) = (qu,qu2 + p,u(E + p)), where q is the density, u is the velocity, E is the total energy

and p ¼ ðc� 1Þ E � 1
2
qu2

� 	
is the pressure. c is the gas constant which is taken as 1.4 in our numerical tests.

As explained in Section 3.4, the anti-diffusive flux is used only in the linearly degenerate second field,
with the eigenvalue u. The usual Lax–Friedrichs flux splitting [11] is used in the genuinely non-linear first

and third characteristic fields.

Example 5.5. We solve the one-dimensional shock-tube problem of Sod [23], with the initial condition
uðx; 0Þ ¼
q ¼ 1:0; u ¼ 0:0; p ¼ 1:0; 0 < x < 0:5;

q ¼ 0:125; u ¼ 0:0; p ¼ 0:1; 0:5 6 x < 1;

�
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The density q at t = 0.14 is plotted in Fig. 6. We can observe a significant improvement of the anti-

diffusive fifth-order WENO scheme over the regular fifth-order WENO scheme in the resolution of

the contact discontinuity. This improvement can be seen more clearly in the zoomed picture on the right

of Fig. 6.

Example 5.6. We solve the one-dimensional shock-tube problem of Lax [12] with the initial condition
uðx; 0Þ ¼
q ¼ 0:445; u ¼ 0:698; p ¼ 3:528; 0 < x < 0:5;

q ¼ 0:5; u ¼ 0:0; p ¼ 0:571; 0:5 6 x < 1:

�

The density q at t = 0.17 is plotted in Fig. 7. We can again observe a significant improvement of the

anti-diffusive fifth-order WENO scheme over the regular fifth-order WENO scheme in the resolution of

the contact discontinuity, in the sense that the number of transition points for the contact discontinuity

is significantly reduced by the anti-diffusive procedure.

Example 5.7. In this example, we solve the problem of two interactive blast waves [27]. The initial condi-

tion is given as
uðx; 0Þ ¼

uL; 0 < x < 0:1;

uM; 0:1 < x < 0:9;

uR; 0:9 < x < 1;

8>><
>>:
where qL = qM = qR = 1, uL = uM = uR = 0, pL = 103, pM = 10�2 and pR = 102. Reflective boundary condi-

tions are applied at both x = 0 and x = 1. The results for the density q at t = 0.038 are plotted in Fig. 8. We

can clearly see a significant improvement of the anti-diffusive fifth-order WENO scheme over the regular

fifth-order WENO scheme in the resolution of the contact discontinuities.
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Solid lines: the exact solution; solid rectangle symbols: numerical solution of the regular fifth-order WENO scheme; unfilled diamond
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5.3. Two-dimensional scalar linear equations

In this section, we test our schemes on two-dimensional scalar linear equations. The computational

domain is (x,y) 2 [�1,1]2 with periodic boundary conditions.

Example 5.8. We solve the two-dimensional advection equation (4.9) with the two initial conditions given

by (4.10). The results at t = 40 (after 20-time periods) are given in Figs. 9 and 10. We can observe a

significant improvement of the anti-diffusive fifth-order WENO scheme over the regular fifth-order WENO
scheme in the resolution of the contact discontinuities, especially for longer time. Notice that the contours

of the exact solution and the anti-diffusive numerical solution for the disk case (Fig. 10, bottom right) are

very close to each other, indicating that the numerical solution maintains the shape quite well, even though

it looks like a polygon in Fig. 9, bottom right, due to a visual deception.
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Example 5.9. We solve the two-dimensional linear advection equation with variable coefficients
ut � yux þ xuy ¼ 0 ð5:3Þ

with an initial condition
uðx; y; 0Þ ¼ 1; ðxþ 0:4Þ2 þ ðy þ 0:4Þ2 6 0:09;

0; otherwise:

(
ð5:4Þ
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fifth-order WENO scheme.
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This is a solid body rotation around origin. The computational result at t = 2p (after one rotation) is given

in Fig. 11. We can again observe a significant improvement of the anti-diffusive fifth-order WENO scheme

over the regular fifth-order WENO scheme in the resolution of the contact discontinuity.
5.4. Two-dimensional systems

In this section, we test our schemes on the two-dimensional Euler equations of compressible gas

dynamics
ut þ fðuÞx þ gðuÞy ¼ 0; ð5:5Þ
where u = (q,qu,qv,E), f(u) = (qu,qu2 + p,quv,u(E + p)), g(u) = (qv,qvu,qv2 + p,v(E + p)), and again q is

the density, (u,v) is the velocity, E is the total energy and p ¼ ðc� 1ÞðE � 1
2
ðqu2 þ qv2ÞÞ is the pressure. c

is the gas constant which is again taken as 1.4 in our numerical tests, unless otherwise stated.



Fig. 9. Example 5.8. Linear advection. 80 · 80 uniform mesh. t = 40. Left: the square initial condition; right: the circular initial

condition. Top: the exact solution; middle: the regular fifth-order WENO scheme; bottom: the anti-diffusive fifth-order WENO

scheme.
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Fig. 10. Example 5.8. Linear advection. 80 · 80 uniformmesh. t= 40. 10 equally distributed contours from 0 to 1. Solid line: the exact
solution. Dotted line: the numerical solution. Left: the square initial condition; right: the circular initial condition. Top: the regular

fifth-order WENO scheme; bottom: the anti-diffusive fifth-order WENO scheme.
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Same as in the one-dimensional case, the anti-diffusive flux is used only in the linearly degenerate second

and third fields, with a double eigenvalue u (the x flux) or v (the y flux). The usual Lax–Friedrichs flux split-

ting [11] is used in the genuinely non-linear first and fourth characteristic fields.

Example 5.10. We test the accuracy of the anti-diffusive fifth-order WENO finite difference scheme for the
non-linear two dimension Euler equation (5.5), with the following initial condition: q = 1 + 0.2sin(p(x + y)),

u = 1.0, v = �0.5, p = 1. The exact solution at a later time t is a convection for the density
y
0 . 7 50 . 50 . 2 5



Fig. 11. Example 5.9. Linear equation with variable coefficients (5.3). Solid body rotation. 100 · 100 uniform mesh. t = 2p. Top:
surface; bottom: 10 equally distributed contours from 0 to 1.0 in a zoomed region. Left: the regular fifth-order WENO scheme; right:

the anti-diffusive fifth-order WENO scheme.
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q(x,y, t) = 1 + 0.2sin(p(x + y � 0.5t)), and u, v and p will remain as constants. The results and a comparison

with the original fifth-order WENO scheme [11] are given in Table 2. We can clearly see that fifth-order

accuracy is achieved and the errors of the fifth-order anti-diffusive WENO scheme are comparable with

that of the original fifth-order WENO scheme.

Example 5.11. We solve the two-dimensional Euler equation (5.5) with an initial condition q = 2, p = 1,

u = v = 1 when (x � 0.5)2 + (y � 0.5)2 6 0.09, and q = 1,p = 1,u = v = 1 outside this circle. This is a moving

cylinder. The results at t = 2 (after two-time periods) and at t = 20 (after 20-time periods) are given in Figs.

12 and 13. We can again observe a significant improvement of the anti-diffusive fifth-order WENO scheme

over the regular fifth-order WENO scheme in the resolution of the contact discontinuities, especially for

longer time.



Table 2

Errors and numerical orders of accuracy of the fifth-order anti-diffusive WENO scheme and the original fifth-order WENO scheme for

the two-dimensional Euler equation (5.5)

Nx · Ny Anti-diffusive WENO Original WENO

L1 error Order L1 error Order L1 error Order L1 error Order

40 · 40 3.23E � 6 6.87E � 6 3.48E � 6 7.08E � 6

80 · 80 1.01E � 7 4.99 2.03E � 7 5.05 1.09E � 7 5.00 2.13E � 7 5.05

160 · 160 3.14E � 9 5.01 5.51E � 9 5.20 3.35E � 9 5.02 5.90E � 9 5.17

320 · 320 9.20E � 11 5.09 1.53E � 10 5.17 9.82E � 11 5.09 1.63E � 10 5.18

640 · 640 2.54E � 12 5.17 5.48E � 12 4.80 2.72E � 12 5.17 5.78E � 12 4.82

Fig. 12. Example 5.11. Moving cylinder. Two-dimensional Euler equations. 100 · 100 uniform mesh. Top: t = 2; bottom: t = 20. Left:

the regular fifth-order WENO scheme; right: the anti-diffusive fifth-order WENO scheme.
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Example 5.12. Raleigh–Taylor instability. Rayleigh–Taylor instability happens on an interface between flu-

ids with different densities when an acceleration is directed from heavy fluid to light one. This problem has

been simulated extensively in the literature, e.g. [5] and [29]. The problem is set up as follows: the compu-

tational domain is [0, 1/4] · [0, 1]. Initially, the interface is at y = 1/2, the heavy fluid with q = 2 is below the

interface, and the light fluid with density q = 1 is above the interface with gravity acceleration in the positive
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y-direction. The pressure p is continuous across the interface. A small perturbation is given to the y-direc-

tion fluid speed. Thus, for 0 6 y < 1/2, q = 2, u = 0, p = 2y + 1, v = � 0.025cos(8px); and for 1/2 < y 6 1,

q = 1, u = 0, p = y + 3/2, v = � 0.025ccos(8px), where c ¼
ffiffiffiffiffiffiffiffiffiffi
cp=q

p
is the sound speed, and the ratio of spe-

cific heats c = 5/3. Reflective boundary conditions are imposed for the left and right boundaries; at the top
boundary, the flow are set as q = 1, p = 2.5, u = v = 0, and at the bottom boundary, they are set as q = 2,

p = 1, u = v = 0. A source term q is added to the right-hand side of the third equation and qv is added to the

fourth equation of the Euler system (5.5). The simulation time is t = 1.95. The simulation results using the
Two-dimensional Euler equations6 10 equally distributed contours6 Solid: the exact solution;

numerical solution6 100

100 uniform mesh6 Top:

t

= 2; bottom:

t

= 206 Left: the regular fifth-order WENO scheme; right:
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regular fifth-order WENO scheme [17] is given in Fig. 14. The results using the anti-diffusive fifth-order

WENO scheme is shown in Fig. 15. We can clearly see that the contact discontinuity resolution (manifested

by the small scale structures) is significantly improved by the anti-diffusive modification to the fifth-order

WENO scheme. We remark that, as pointed out in [17,30], since we have used the inviscid Euler equations,

the details of the complex solution structures due to the physical instability of contact discontinuities are
related to the specific form of numerical viscosity of the scheme. A physically correct calculation for these

problems would have to use the Navier–Stokes equations with the real physical viscosity [30]. However, the
Fig. 14. Raleigh–Taylor instability problem. Density at t = 1.95. Regular fifth-order WENO scheme. Dx = Dy = 1/240 (left), 1/480

(middle) and 1/960 (right). 15 equally spaced contours from q = 0.952269 to q = 2.14589.
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Fig. 15. Raleigh–Taylor instability problem. Density at t = 1.95. The anti-diffusive fifth-order WENO scheme. Dx = Dy = 1/240 (left),

1/480 (middle) and 1/960 (right). 15 equally spaced contours from q = 0.952269 to q = 2.14589.
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inviscid Euler calculations are important to identity the size of numerical viscosities. The appearance of the

small structures in the flow is a measurement of the smallness of the inherent numerical viscosities of the

numerical schemes. Only when the numerical viscosity is significantly smaller than the physical viscosity

can the Navier–Stokes simulation be trusted.

Example 5.13. Double Mach reflection. This problem was initially proposed and studied in [27]. It has been

used extensively in the literature as a test case for high resolution schemes. The computational domain is

[0,4] · [0,1], and the reflecting wall lies at the bottom of the computational domain starting at x = 1/6. Ini-

tially, a right-moving Mach 10 shock is positioned at x = 1/6, y = 0 and has a 60� angle with the x-axis.

Exact postshock condition is imposed for the bottom boundary from x = 0 to x = 1/6, and reflective bound-
ary condition is imposed for the rest of the bottom boundary. As for the top boundary, the flow values are

set to describe the exact motion of this Mach 10 shock. Inflow and outflow boundary conditions are applied

for left and right boundaries. The unshocked fluid has a density q = 1.4 and a pressure p = 1.0. The problem

is run to t = 0.2.
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Fig. 17. Double Mach reflection problem. Density at t = 0.2. 30 equally spaced contours from q = 1.5 to q = 22.9705. From top to

bottom: Dx = Dy = 1/120, 1/240 and 1/480. Left: regular fifth-order WENO scheme; right: the anti-diffusive fifth-order WENO scheme.
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This problem contains a strong shock, near which the anti-diffusive fluxes should not be used. We apply

an ad hoc pressure based criterion, originally proposed in [14], to switch between a regular Lax–Friedrichs

based WENO flux and a anti-diffusive WENO flux. Specifically, when evaluating the flux in the x direction,

we compute a normalized pressure jump Si;j ¼
jpi�1;j�1�pi;jþ1jþjpi�1;jþ1�pi;j�1j

minðjpi�1;j�1j;jpi;jþ1j;jpi�1;jþ1j;jpi;j�1jÞ
. If Si,j > 10, we use the original
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LaxFriedrichs based WENO flux for the linearly degenerate fields, otherwise we use anti-diffusive WENO

flux. The procedure is adopted for the flux in the y direction symmetrically. Notice that the threshold

Si,j > 10 is not generic and might need to be adjusted for different problems.

The simulation results using the regular fifth-order WENO scheme [11] is given in Fig. 16, left. The re-

sults using the anti-diffusive fifth-order WENO scheme is shown in Fig. 16, right. The contours zoomed
around the double Mach reflection region are given in Fig. 17. We can clearly see that the contact discon-

tinuity resolution (manifested by the small scale structures) is significantly improved by the anti-diffusive

modification to the fifth-order WENO scheme.
6. Concluding remarks

We have generalized the anti-diffusive flux corrections for sharpening contact discontinuities in [3] to
high order finite difference WENO schemes. One- and two-dimensional scalar and system cases are all con-

sidered. The complication related to high order multi-stage Runge–Kutta time discretization is also ad-

dressed. Extensive numerical experiments, from one-dimensional scalar problems to two-dimensional

systems, are performed to demonstrate the capability of the anti-diffusive WENO methods in maintaining

high order accuracy and in sharpening contact discontinuities.
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